

Pilot ACR

Product description

This is a one component physically drying acrylic coating. It has a semi gloss finish with good gloss retention. It is fast drying. It can be used direct to metal. To be used as topcoat in atmospheric environments. It can be applied at sub zero surface temperatures. The product is certified not to spread surface flames.

Scope

The Application Guide offers product details and recommended practices for the use of the product.

The data and information provided are not definite requirements. They are guidelines to assist with efficient and safe use, and optimum service of the product. Adherence to the guidelines does not relieve the applicator of responsibility for ensuring that the work meets specification requirements.

Jotuns liability is in accordance with general product liability rules.

The Application Guide (AG) must be read in conjunction with the relevant specification, Technical Data Sheet (TDS) and Safety Data Sheet (SDS) for all the products used as part of the coating system.

Referred standards

Reference is generally made to ISO Standards. When using standards from other regions it is recommended to reference only one corresponding standard for the substrate being treated.

Surface preparation

The required quality of surface preparation can vary depending on the area of use, expected durability and if applicable, project specification.

When preparing new surfaces, maintaining already coated surfaces or aged coatings it is necessary to remove all contamination that can interfere with coating adhesion, and prepare a sound substrate for the subsequent product.

Inspect the surface for hydrocarbon and other contamination and if present, remove with an alkaline detergent. Agitate the surface to activate the cleaner and before it dries, wash the treated area using fresh water. Paint solvents (thinners) shall not be used for general degreasing or preparation of the surface for painting due to the risk of spreading dissolved hydrocarbon contamination. Paint thinners can be used to treat small localized areas of contamination such as marks from marker pens. Use clean, white cotton cloths that are turned and replaced often. Do not bundle used solvent saturated cloths. Place used cloths into water.

Process sequence

Surface preparation and coating should normally be commenced only after all welding, degreasing, removal of sharp edges, weld spatter and treatment of welds is complete. It is important that all hot work is completed before coating commences.

Soluble salts removal

Soluble salts have a negative impact on the coating systems performance. Jotun's general recommendations for maximum soluble salts (sampled and measured as per ISO 8502-6 and -9) content on a surface are:
Areas exposed to (ISO 12944-2):

C1-C4: 200 mg/m²

Carbon steel

Initial rust grade

The steel shall preferably be Rust Grade A or B (ISO 8501-1). It is technically possible to apply the coating to rust grades C and D, but it is practically challenging to ensure specified film thickness on such a rough surface, hence risk of reduced lifetime of the coating system.

Initial inspection and pretreatment

Inspect the surface for contaminations and if present, remove with an alkaline detergent. Agitate the surface to activate the cleaner and before it dries, wash the treated area by Low-Pressure Water Cleaning (LPWC) to Wa 1 (ISO 8501-4) using fresh water.

Non-contaminated areas shall be washed down by Low-Pressure Water Cleaning (LPWC) to Wa 1 (ISO 8501-4) using fresh water to reduce the concentration of surface chlorides.

Metal finishing

For areas in corrosivity category C1 to C4 (ISO 12944-2) all irregularities, burrs, slivers, slag and spatter on welds, sharp edges and corners shall conform to minimum grade P2 (ISO 8501-3) Table 1, or as specified. Defective welds shall be replaced and treated to an acceptable finish before painting. Temporary welds and brackets shall be ground to a flat finish after removal from the parent metal.

Pitting repair

Pittings in steel can be difficult to cover fully with most coatings. In some areas it is practically feasible to use filler to fill pittings. This should then be done either after the initial surface preparation or after application of first coat.

Abrasive blast cleaning

Optimum performance is achieved by dry abrasive blast cleaning to Sa 2½ or higher (ISO 8501-1) with a blast medium suitable to achieve a sharp and angular surface profile of 30-85 µm, grade Fine to Medium G (ISO 8503- 2).

Cleanliness

Minimum acceptable blast cleaning standard is Sa 1 (ISO 8501-1).

Dust contamination

At the completion of abrasive blasting the prepared surface shall be cleaned to remove residues of corrosion products and abrasive media, and inspected for surface particulate contamination. Maximum contamination level is rating 2 (ISO 8502-3) as per Figure 1. Dust size no greater than class 2.

Hand and Power Tool Cleaning

Power tool cleaning

Surfaces to be coated shall be prepared by mechanical preparation methods to minimum St 2 (ISO 8501-1). Suitable methods are disc grinding, hand sanding or hand wire brushing. If power wire brushing is used, care should be taken not to polish the metal surface, as this can reduce adhesion of the coating. The surface should appear rough and mat.

Water jetting

Not recommended.

Galvanised steel

Abrasive blast cleaning

After removal of excess zinc and surface defects the area to be coated shall be degreased to ISO 12944-4, Part 6.2.4 Alkaline Cleaning. The galvanised surface shall be sweep blast-cleaned with the nozzle angle at 45-60° from perpendicular at reduced nozzle pressure to create a sharp and angular surface profile using approved non-metallic abrasive media. As a guide, a surface profile 25-55 µm, grade Fine G; Ry5 (ISO 8503-2) should be achieved.

Water jetting

Inspect the surface for process residues, hydrocarbon contamination and zinc corrosion by-products. If present, remove with an alkaline detergent. Agitate the surface to activate the detergent and before it dries, wash the treated area by Low-Pressure Water Cleaning (LPWC) to a grade corresponding to the description of Wa 1 (ISO 8501-4) or higher standard using fresh water.

Optimum performance is achieved with preparation to a grade corresponding to the description of Wa 2½. Minimum preparation grade is Wa 1.

Aluminium

Hand and Power Tool Cleaning

After pre-treatment of welds, sharp edges, removal of weld spatter and other surface contamination the surface shall be degreased using an alkaline detergent which is agitated with non-metallic brushes and then fresh water rinsed. The cleaned surface shall be then hand or machine abraded with non-metallic abrasives or bonded fibre machine or hand abrasive pads to remove all surface polish and to impart a scratch pattern to the surface. Do not use high speed rotational sanders.

Water jetting

Inspect the surface for process residues, hydrocarbon contamination and corrosion by products. If present, remove with an alkaline detergent. Agitate the surface to activate the detergent and before it dries, wash the treated area by Low-Pressure Water Cleaning (LPWC) to a grade corresponding to the description of Wa 1 (ISO 8501-4) or higher standard using fresh water.

Stainless steel

Water jetting

Inspect the surface for process residues, hydrocarbon contamination and corrosion by products. If present, remove with an alkaline detergent. Agitate the surface to activate the detergent and before it dries, wash the treated area by Low-Pressure Water Cleaning (LPWC) to a grade corresponding to the description of Wa 1 (ISO 8501-4) or higher standard using fresh water.

Chlorinated or chlorine containing solvents or detergents must not be used on stainless steel.

Coated surfaces

Verification of existing coatings including primers

When the surface is an existing coating, verify with technical data sheet and application guide of the involved products, both over coatability and the given maximum over coating interval.

Over coating

The surface of previous coats shall be free from contamination by water, hydrocarbon based products, wax, mud, mortar droppings and loose, chalked and flaking coating. Inspect the surface for oil, grease and other contamination and if present, remove with an alkaline detergent. Agitate the surface to activate the detergent and before it dries, wash the treated area using plenty of fresh water. When applied on coatings past maximum over coating interval light abrading may be required to achieve proper intercoat adhesion.

Shop primers

Before being overcoated the shop primer must be fully cured, clean, dust free, dry and undamaged. Inorganic zinc shop primers must be free of zinc salts (white rust). Corroded and damaged areas must be mechanically cleaned to minimum St 2 (ISO 8501-1).

Other surfaces

Wooden surfaces must be clean and dry before being coated. Surface contamination must be removed by use of alkaline detergent and flushing with fresh water.

Application

Acceptable environmental conditions - before and during application

Before application, test the atmospheric conditions in the vicinity of the substrate for the dew formation according to ISO 8502-4.

Air temperature	-10 - 50	°C
Substrate temperature	-10 - 40	°C
Relative Humidity (RH)	10 - 85	%

The following restrictions must be observed:

- Only apply the coating when the substrate temperature is at least 3 °C (5 °F) above the dew point
- Do not apply the coating if the substrate is wet or likely to become wet
- Do not apply the coating if the weather is clearly deteriorating or unfavourable for application or curing
- Do not apply the coating in high wind conditions

Product mixing

Product mixing

Single pack

Induction time and Pot life

The temperature of base and curing agent is recommended to be 18 °C or higher when the product is mixed.

Thinner/Cleaning solvent

Thinner: Jotun Thinner No. 7 / Jotun Thinner No. 10

Note: Korean VOC regulation "Korea Clean Air Conservation Act" and its corresponding thinning limit will prevail over recommended thinning volumes.

Application data

Spray application

Airless Spray Equipment

Pump ratio (minimum) :	32:1
Pressure at nozzle (minimum) :	150 bar/2100 psi
Nozzle tip (inch/1000) :	15-21
Nozzle output (litres/minute) :	0.9-1.9
Filters (mesh) :	70

Several factors influence, and need to be observed to maintain the recommended pressure at the nozzle. Among factors causing pressure drop are:

- extended hoses or hose bundles
- extended hose whip-end line
- small internal diameter hoses
- high paint viscosity
- large spray nozzle size
- inadequate air capacity from compressor
- incorrect or clogged filters

Other application tools

Brush application

Suitable for application with brush. Use a high quality, clean natural or synthetic bristle brush with proper shape and size. When used as primer coat, a stiff brush is recommended to secure proper substrate wetting. When used as a finish coat a more long haired brush is recommended to improve flow and appearance. To achieve specified dry film thickness it may be necessary to apply multiple coats.

Roller application

Suitable for application with roller. Use a properly sized, high quality, clean roller with natural or synthetic cover. Pre-wash new rollers in proper thinner to remove loose fibres. Roller is not recommended for application of primer coat. Addition of small volumes (5-10 %) of thinner will improve appearance when used as finish coat. To achieve specified dry film thickness it may be necessary to apply multiple coats.

Film thickness per coat

Typical recommended specification range

Dry film thickness	60 - 120	µm
Wet film thickness	110 - 220	µm
Theoretical spreading rate	9.2 - 4.6	m ² /l

This product can be applied up to 50 % higher than maximum specified film thickness without loss of technical properties.

Film thickness measurement

Wet film thickness (WFT) measurement and calculation

To ensure correct film thickness, it is recommended to measure the wet film thickness continuously during application using a painter's wet film comb (ISO 2808 Method 1A). The measurements should be done as soon as possible after application.

Fast drying paints may give incorrect (too low) readings resulting in excessive dry film thickness. For multi layer physically drying (resoluble) coating systems the wet film thickness comb may give too high readings resulting in too low dry film thickness of the intermediate and top coats.

Use a wet-to-dry film calculation table (available on the Jotun Web site) to calculate the required wet film thickness per coat.

Dry film thickness (DFT) measurement

When the coating has cured to hard dry state the dry film thickness can be checked to SSPC PA 2 or equivalent standard using statistical sampling to verify the actual dry film thickness. Measurement and control of the WFT and DFT on welds is done by measuring adjacent to and no further than 15 mm from the weld.

Ventilation

Sufficient ventilation is very important to ensure proper drying/curing of the film.

Coating loss

The consumption of paint should be controlled carefully, with thorough planning and a practical approach to reducing loss. Application of liquid coatings will result in some material loss. Understanding the ways that coating can be lost during the application process, and making appropriate changes, can help reducing material loss.

Some of the factors that can influence the loss of coating material are:

- type of spray gun/unit used
- air pressure used for airless pump or for atomization
- orifice size of the spray tip or nozzle
- fan width of the spray tip or nozzle
- the amount of thinner added
- the distance between spray gun and substrate
- the profile or surface roughness of the substrate. Higher profiles will lead to a higher "dead volume"
- the shape of the substrate target
- environmental conditions such as wind and air temperature

Drying and Curing time

Substrate temperature	-10 °C	0 °C	5 °C	10 °C	23 °C	40 °C
Surface (touch) dry	30 min	30 min	20 min	15 min	15 min	15 min
Walk-on-dry	7 h	7 h	7 h	5 h	4 h	4 h
Dry to over coat, minimum	3 h	3 h	3 h	2 h	1 h	1 h

Drying and curing times are determined under controlled temperatures and relative humidity below 85 %, and at average of the DFT range for the product.

Surface (touch) dry: The state of drying when slight pressure with a finger does not leave an imprint or reveal tackiness.

Walk-on-dry: Minimum time before the coating can tolerate normal foot traffic without permanent marks, imprints or other physical damage.

Dry to over coat, minimum: The recommended shortest time before the next coat can be applied.

Maximum over coating intervals

Maximum time before thorough surface preparation is required. The surface must be clean and dry and suitable for over coating. Inspect the surface for chalking and other contamination and if present, remove with an alkaline detergent. Agitate the surface to activate the cleaner and before it dries, wash the treated area by low-pressure water cleaning using fresh water.

If maximum over coating interval is exceeded the surface should in addition be carefully roughened to ensure good inter coat adhesion.

Areas for atmospheric exposure

Average temperature during drying/curing	-10 °C	0 °C	5 °C	10 °C	23 °C	40 °C
Itself	extended	extended	extended	extended	extended	extended

Other conditions that can affect drying / curing / over coating

Adding anti-skid to the coating system

Anti skid aggregate should only be added in the final coat, and should not be used in single coat systems. Spread the aggregate evenly on the surface before half of time to Surface dry. Use Jotun Anti-skid, fine particle size (180 - 250 µm), for coatings applied in 50 to 150 µm DFT. The recommended usage is 1.5 - 2.0 kg per 10 litres of paint.

Water/Moisture contamination

If the wet coating is exposed to relative humidity above 85% or to moisture before the coating is at least Walk-on-dry, then blushing may occur. Blushing will cause fading of bright colours, and will affect the gloss. Provided the coating is fully dried/cured the protective properties will not be affected. All affected areas should be lightly sanded, cleaned and recoated.

Repair of coating system

Damages to the coating layers:

Prepare the area through sandpapering or grinding, followed by thorough cleaning/vacuuming. When the surface is clean and dry the coating may be over coated by itself or by another product, ref. original specification.

Always observe the maximum over coating intervals. If the maximum over coating interval is exceeded the surface should be carefully roughened in order to ensure good intercoat adhesion.

Damages exposing bare substrate:

Remove all rust, loose paint, grease or other contaminants by spot blasting, mechanical grinding, water and/or solvent washing. Feather edges and roughen the overlap zone of surrounding intact coating. Apply the coating system specified for repair.

Repair of damaged areas

Sags and runs can be caused by too high wet film thickness, too much thinner added or the spray gun used too close to the surface.

Repair by using a paint brush to smooth the film when still wet. Sand down to a rough, even surface and re-coat if dry.

Orange peel can be caused by poor flow/levelling properties of the paint, poor atomization of the paint, thinner evaporating too fast or the spray gun held too close to the surface.

This can be rectified by abrading the surface and applying an additional coat after having adjusted the application properties or the application technique.

Dry spray can be caused by poor atomization of the paint, spray gun held too far from the surface, high air temperature, thinner evaporating too fast or coating applied in windy conditions. Physically drying paints can be solvent wiped and another coat applied. If area is too large to practically solvent wipe, consider sandpapering or grinding, followed by thorough washing. When the surface is dry the coating may be over coated by itself.

Pinholes can be caused by entrapped solvents in the film or by incorrect application technique. Pinholes can be repaired as per procedure for damages to the coating layer or to the substrate, ref. above.

Coating film continuity

When required by the specification, the coating shall be tested for film discontinuity according to ASTM D 5162, test method A or B as appropriate for the actual dry film thickness.

All recorded defects shall be repaired by best practical means.

Finish

The application process of a top-coat product significantly influences its final finish and gloss. Techniques like brushing, rolling, and spraying each have unique impacts, with spraying generally providing the smoothest and most uniform finish. Environmental factors such as temperature, humidity, and air flow also will also effect the appearance of the coating. Additionally, the quality and maintenance of tools, including brushes, rollers, and spray guns, is important. Properly calibrated and clean tools ensure a smooth application, free of imperfections.

Quality assurance

The following information is the minimum required. The specification may have additional requirements.

- Confirm that all welding and other metal work has been completed before commencing pre-treatment and surface preparation
- Confirm that installed ventilation is balanced and has the capacity to deliver and maintain the RAQ
- Confirm that the required surface preparation standard has been achieved and is held prior to coating application
- Confirm that the climatic conditions are within recommendations in the AG, and are held during the application
- Confirm that the required number of stripe coats have been applied
- Confirm that each coat meets the DFT requirements in the specification
- Confirm that the coating has not been adversely affected by rain or other factors during curing
- Observe that adequate coverage has been achieved on corners, crevices, edges and surfaces where the spray gun cannot be positioned so that its spray impinges on the surface at 90° angle
- Observe that the coating is free from defects, discontinuities, insects, abrasive media and other contamination
- Observe that the coating is free from misses, sags, runs, wrinkles, fat edges, mud cracking, blistering, obvious pinholes, excessive dry spray, heavy brush marks and excessive film build
- Observe that the uniformity and colour are satisfactory

All noted defects shall be fully repaired to conform to the coating specification.

Caution

This product is for professional use only. The applicators and operators shall be trained, experienced and have the capability and equipment to mix/stir and apply the coatings correctly and according to Jotun's technical documentation. Applicators and operators shall use appropriate personal protection equipment when using this product. This guideline is given based on the current knowledge of the product. Any suggested deviation to suit the site conditions shall be forwarded to the responsible Jotun representative for approval before commencing the work.

For further advice please contact your local Jotun office.

Health and safety

Please observe the precautionary notices displayed on the container. Use under well ventilated conditions. Do not inhale spray mist. Avoid skin contact. Spillage on the skin should immediately be removed with suitable cleanser, soap and water. Eyes should be well flushed with water and medical attention sought immediately.

Accuracy of information

Always refer to and use the current (last issued) version of the TDS, SDS and if available, the AG for this product. Always refer to and use the current (last issued) version of all International and Local Authority Standards referred to in the TDS, AG & SDS for this product.

Colour variation

When applicable, products primarily meant for use as primers or antifoulings may have slight colour variations from batch to batch. Such products and epoxy based products used as a finish coat may chalk when exposed to sunlight and weathering.

Colour and gloss retention on topcoats/finish coats may vary depending on type of colour, exposure environment such as temperature, UV intensity etc., application quality and generic type of paint. Contact your local Jotun office for further information.

Reference to related documents

The Application Guide (AG) must be read in conjunction with the relevant specification, Technical Data Sheet (TDS) and Safety Data Sheet (SDS) for all the products used as part of the coating system.

When applicable, refer to the separate application procedure for Jotun products that are approved to classification societies such as PSPC, IMO etc.

Symbols and abbreviations

min = minutes

h = hours

d = days

°C = degree Celsius

° = unit of angle

TDS = Technical Data Sheet

AG = Application Guide

SDS = Safety Data Sheet

VOC = Volatile Organic Compound

MCI = Jotun Multi Colour Industry (tinted colour)

µm = microns = micrometres
g/l = grams per litre
g/kg = grams per kilogram
m²/l = square metres per litre
mg/m² = milligrams per square metre
psi = unit of pressure, pounds/inch²
Bar = unit of pressure
RH = Relative humidity (% RH)
UV = Ultraviolet
DFT = dry film thickness
WFT = wet film thickness

RAQ = Required air quantity
PPE = Personal Protective Equipment
EU = European Union
UK = United Kingdom
EPA = Environmental Protection Agency
ISO = International Standards Organisation
ASTM = American Society of Testing and Materials
AS/NZS = Australian/New Zealand Standards
NACE = National Association of Corrosion Engineers
SSPC = The Society for Protective Coatings
PSPC = Performance Standard for Protective Coatings
IMO = International Maritime Organization
ASFP = Association for Specialist Fire Protection

Disclaimer

The information in this document is given to the best of Jotun's knowledge, based on laboratory testing and practical experience. Jotun's products are considered as semi-finished goods and as such, products are often used under conditions beyond Jotun's control. Jotun cannot guarantee anything but the quality of the product itself. Minor product variations may be implemented in order to comply with local requirements. Jotun reserves the right to change the given data without further notice.

Users should always consult Jotun for specific guidance on the general suitability of this product for their needs and specific application practices.

If there is any inconsistency between different language issues of this document, the English (United Kingdom) version will prevail.